Curvature-based feature selection with application in classifying electronic health records

نویسندگان

چکیده

Disruptive technologies provides unparalleled opportunities to contribute the identifications of many aspects in pervasive healthcare, from adoption Internet Things through Machine Learning (ML) techniques. As a powerful tool, ML has been widely applied patient-centric healthcare solutions. To further improve quality patient care, Electronic Health Records (EHRs) are commonly adopted facilities for analysis. It is crucial task apply AI and analyse those EHRs prediction diagnostics due their highly unstructured, unbalanced, incomplete, high-dimensional nature. Dimensionality reduction common data preprocessing technique cope with EHR data, which aims reduce number features representation while improving performance subsequent analysis, e.g. classification. In this work, an efficient filter-based feature selection method, namely Curvature-based Feature Selection (CFS), presented. The proposed CFS concept Menger Curvature rank weights all given set. evaluated four well-known sets, including Cervical Cancer Risk Factors (CCRFDS), Breast Coimbra (BCCDS), Tissue (BTDS), Diabetic Retinopathy Debrecen (DRDDS). experimental results show that achieved state-of-the-art on above sets against conventional PCA other most recent approaches. source code approach publicly available at https://github.com/zhemingzuo/CFS.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection for Temporal Health Records

In this paper we consider three alternative feature vector representations of patient health records. The longitudinal (temporal), irregular character of patient episode history, an integral part of a health record, provides some challenges in applying data mining techniques. The present application involves episode history of monitoring services for elderly patients with diabetes. The applicat...

متن کامل

evidence of adverse selection in irans health insurance market

در این تحقیق به مطالعه وجود انتخاب نامساعد(کژ گزینی) در بازار بیمه درمان تکمیلی ایران پرداخته شده است. داده های مورد نیاز توسط پرسشنامه و به روش نمونه گیری خوشه ای جمع آوری شده است. پرسشنامه ها در میان افراد شاغل ساکن شهر تهران توریع شد. در این تحقیق با استفاده از تخمین دو مدل لجستیک و به دست آوردن ضریب همبستگی میان تقاضای بیمه درمان تکمیلی و رخداد خسارت به بررسی موضوع مورد نظر پرداخته شده است....

15 صفحه اول

Information Security Requirements for Implementing Electronic Health Records in Iran

Background and Goal: ICT development in recent years has created excellent developments in human social and economic life. One of the most important opportunities to use information technology is in the medical field, that the result would be electronic health record (EHR).The purpose of this research is to investigate the effects information securi...

متن کامل

Information Security Requirements for Implementing Electronic Health Records in Iran

Background and Goal: ICT development in recent years has created excellent developments in human social and economic life. One of the most important opportunities to use information technology is in the medical field, that the result would be electronic health record (EHR).The purpose of this research is to investigate the effects information securi...

متن کامل

Hybrid Electronic Health Records

The research related with digital health records is has been a hot topic since the last two decades, producing diverse results namely two main types – Electronic Health Records and Personal Health Records. Based on those types of records different implementations appeared, although new challenges also emerged. The wider citizen mobility, liberalization of health care providing, alternative medi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Technological Forecasting and Social Change

سال: 2021

ISSN: ['0040-1625', '1873-5509']

DOI: https://doi.org/10.1016/j.techfore.2021.121127